Efficient Training of GMM Based Speaker Recognition System

نویسنده

  • Snani Cherifa
چکیده

Automatic speaker recognition (ASR) is based on speech feature vectors, models, and classifiers. To improve the speaker recognition performance, we must affect at least one of these modules. In this paper we propose to use subband spectral centroids (SSCs) as a complementary features with the traditional MFCC features, and a new GMM training algorithm, with the ultimate goal to search the better mixture component number N for each speaker model, which is fixed in the most speaker recognition systems based on GMM without any priori information, and all speaker models have the same number of components. In experiments, we compared the performance of the proposed scheme with the conventional GMM to show its robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Discriminant Approaches for Gmm Based Speaker Detection Systems

This paper presents some experiments on discriminative training for GMM/UBM based speaker recognition systems. We propose two MMIE adaptation methods for GMM component weights suitable for speaker recognition. The impact on performance of this training methods is compared to the standard weight estimation/adaptation criterion, MLE and MAP on standard GMM based systems and on SVM based systems. ...

متن کامل

Performance evaluation of Statistical Approaches for Automatic Text-Independent Speaker Recognition using Robust Features

This paper introduces the performance evaluation of statististical approaches for Automatic-text-independent Speaker Recognition system. Automatic-text-independent Speaker Recognition system is to quickly and accurately identify the person from his/her voice. The study on the effect of feature vector size for good speaker recognition demonstrates that the feature vector size in the range of 18-...

متن کامل

Local fuzzy PCA based GMM with dimension reduction on speaker identification

To reduce the high dimensionality required for training of feature vectors in speaker identification, we propose an efficient GMM based on local PCA with fuzzy clustering. The proposed method firstly partitions the data space into several disjoint clusters by fuzzy clustering, and then performs PCA using the fuzzy covariance matrix on each cluster. Finally, the GMM for speaker is obtained from ...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013